If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+20x+220=0
a = -16; b = 20; c = +220;
Δ = b2-4ac
Δ = 202-4·(-16)·220
Δ = 14480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14480}=\sqrt{16*905}=\sqrt{16}*\sqrt{905}=4\sqrt{905}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{905}}{2*-16}=\frac{-20-4\sqrt{905}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{905}}{2*-16}=\frac{-20+4\sqrt{905}}{-32} $
| 3x-34=x+32 | | 38+9q=8 | | 15x89=119 | | 3(2x+5)=12x+30 | | -90=u/9+3 | | 0=-16t^2+20t+220 | | -4(3x-8)=31+9x | | 1+6y=11 | | 81=u/9+3 | | -4(3x-8)=31+ | | n+398=7 | | 249=31-w | | 11x-2=8x+22 | | 3k-6=-3 | | 6m(m+2)=5m-2 | | b+1.2=10 | | 72=u/8+3 | | 6x+37=103 | | x/(-9)=–6 | | 0=u/8+3 | | 7w+27=16w | | 81=u/8+3 | | 31=x/2+19 | | 2x+3+6x+1=180 | | -90=u/8+3 | | 5r+7=76 | | 61=7x+5 | | 240=-x/3+19 | | -3=3x+6(-x3) | | 1w-8=-5 | | 7x+6+90+15x-8=180 | | 23=3k+11 |